Difference between revisions of "Postmitotic cells mechanism of aging"
(Autoloading by CXLParser) |
(Autoloading by CXLParser) |
||
Line 236: | Line 236: | ||
(.//.)<html><!--Pop-up for: Complement System !Pop-up--> | (.//.)<html><!--Pop-up for: Complement System !Pop-up--> | ||
<div class="1N9YW6LSZ-1XJCCZW-24CY" style="display:none;"> | <div class="1N9YW6LSZ-1XJCCZW-24CY" style="display:none;"> | ||
+ | |||
Line 247: | Line 248: | ||
</div>(...)<!--Pop-up for: TNFa !Pop-up--> | </div>(...)<!--Pop-up for: TNFa !Pop-up--> | ||
<div class="1N9YW1GW9-MWLBM4-2489" style="display:none;"> | <div class="1N9YW1GW9-MWLBM4-2489" style="display:none;"> | ||
+ | |||
Line 258: | Line 260: | ||
</div>(...)<!--Pop-up for: IL1b !Pop-up--> | </div>(...)<!--Pop-up for: IL1b !Pop-up--> | ||
<div class="1N9YW199S-9XZ29K-2485" style="display:none;"> | <div class="1N9YW199S-9XZ29K-2485" style="display:none;"> | ||
+ | |||
Line 269: | Line 272: | ||
</div>(...)<!--Pop-up for: Lipids Peroxidation !Pop-up--> | </div>(...)<!--Pop-up for: Lipids Peroxidation !Pop-up--> | ||
<div class="1N9YX3WJ1-KXRC10-25HQ" style="display:none;"> | <div class="1N9YX3WJ1-KXRC10-25HQ" style="display:none;"> | ||
+ | |||
Line 280: | Line 284: | ||
</div>(...)<!--Pop-up for: IL6 !Pop-up--> | </div>(...)<!--Pop-up for: IL6 !Pop-up--> | ||
<div class="1N9YW1N33-TNHJF3-248F" style="display:none;"> | <div class="1N9YW1N33-TNHJF3-248F" style="display:none;"> | ||
+ | |||
Line 291: | Line 296: | ||
</div>(...)<!--Pop-up for: Autophagy !Pop-up--> | </div>(...)<!--Pop-up for: Autophagy !Pop-up--> | ||
<div class="1N9YWJSYJ-1691RHD-24XC" style="display:none;"> | <div class="1N9YWJSYJ-1691RHD-24XC" style="display:none;"> | ||
+ | |||
Line 302: | Line 308: | ||
</div>(...)<!--Pop-up for: Gene expression changes !Pop-up--> | </div>(...)<!--Pop-up for: Gene expression changes !Pop-up--> | ||
<div class="1N9YWFM6D-277RC2R-24TG" style="display:none;"> | <div class="1N9YWFM6D-277RC2R-24TG" style="display:none;"> | ||
+ | |||
Line 313: | Line 320: | ||
</div>(...)<!--Pop-up for: Pro-inflammatory Cytokines !Pop-up--> | </div>(...)<!--Pop-up for: Pro-inflammatory Cytokines !Pop-up--> | ||
<div class="1J05X8CS3-1X1H2V4-L1" style="display:none;"> | <div class="1J05X8CS3-1X1H2V4-L1" style="display:none;"> | ||
+ | |||
Line 324: | Line 332: | ||
</div>(...)<!--Pop-up for: Disruption of turnover and Function of membranes !Pop-up--> | </div>(...)<!--Pop-up for: Disruption of turnover and Function of membranes !Pop-up--> | ||
<div class="1N9YVP6QC-7N0H62-23ZR" style="display:none;"> | <div class="1N9YVP6QC-7N0H62-23ZR" style="display:none;"> | ||
+ | |||
Line 335: | Line 344: | ||
</div>(...)<!--Pop-up for: Proteolysis !Pop-up--> | </div>(...)<!--Pop-up for: Proteolysis !Pop-up--> | ||
<div class="1N9YWJD6F-54Q3H9-24WV" style="display:none;"> | <div class="1N9YWJD6F-54Q3H9-24WV" style="display:none;"> | ||
+ | |||
Line 346: | Line 356: | ||
</div>(...)<!--Pop-up for: Lipofuscin !Pop-up--> | </div>(...)<!--Pop-up for: Lipofuscin !Pop-up--> | ||
<div class="1N9YX613C-Y0F2V0-25JH" style="display:none;"> | <div class="1N9YX613C-Y0F2V0-25JH" style="display:none;"> | ||
+ | |||
Line 357: | Line 368: | ||
</div>(...)<!--Pop-up for: Generalized inflammation !Pop-up--> | </div>(...)<!--Pop-up for: Generalized inflammation !Pop-up--> | ||
<div class="1J05X8CS3-1JDM6TC-L7" style="display:none;"> | <div class="1J05X8CS3-1JDM6TC-L7" style="display:none;"> | ||
+ | |||
Line 368: | Line 380: | ||
</div>(...)<!--Pop-up for: P38 !Pop-up--> | </div>(...)<!--Pop-up for: P38 !Pop-up--> | ||
<div class="1N9YWBBKH-3QGLQW-24H0" style="display:none;"> | <div class="1N9YWBBKH-3QGLQW-24H0" style="display:none;"> | ||
+ | |||
Line 379: | Line 392: | ||
</div>(...)<!--Pop-up for: Postmitotic and weakly Proliferating cells !Pop-up--> | </div>(...)<!--Pop-up for: Postmitotic and weakly Proliferating cells !Pop-up--> | ||
<div class="1J05X8CS3-1QFRHPJ-KT" style="display:none;"> | <div class="1J05X8CS3-1QFRHPJ-KT" style="display:none;"> | ||
+ | |||
Line 390: | Line 404: | ||
</div>(...)<!--Pop-up for: Disruption of Protein turnover !Pop-up--> | </div>(...)<!--Pop-up for: Disruption of Protein turnover !Pop-up--> | ||
<div class="1J05X8CS3-27PMHF7-KY" style="display:none;"> | <div class="1J05X8CS3-27PMHF7-KY" style="display:none;"> | ||
+ | |||
Line 401: | Line 416: | ||
</div>(...)<!--Pop-up for: NFkB !Pop-up--> | </div>(...)<!--Pop-up for: NFkB !Pop-up--> | ||
<div class="1N9YWBHRP-1W2ZTFV-24H4" style="display:none;"> | <div class="1N9YWBHRP-1W2ZTFV-24H4" style="display:none;"> | ||
+ | |||
Line 412: | Line 428: | ||
</div>(...)<!--Pop-up for: Gene expression Changes !Pop-up--> | </div>(...)<!--Pop-up for: Gene expression Changes !Pop-up--> | ||
<div class="1N9YWXDGL-WMBPN2-259F" style="display:none;"> | <div class="1N9YWXDGL-WMBPN2-259F" style="display:none;"> | ||
+ | |||
Line 423: | Line 440: | ||
</div>(...)<!--Pop-up for: Gene expression changes (SIRT1, AMPK and etc) !Pop-up--> | </div>(...)<!--Pop-up for: Gene expression changes (SIRT1, AMPK and etc) !Pop-up--> | ||
<div class="1N9YWPNBC-3VVDNN-2500" style="display:none;"> | <div class="1N9YWPNBC-3VVDNN-2500" style="display:none;"> | ||
+ | |||
Line 434: | Line 452: | ||
</div>(...)<!--Pop-up for: Protein Carbonylation !Pop-up--> | </div>(...)<!--Pop-up for: Protein Carbonylation !Pop-up--> | ||
<div class="1N9YX4SJZ-6LRCC4-25HY" style="display:none;"> | <div class="1N9YX4SJZ-6LRCC4-25HY" style="display:none;"> | ||
+ | |||
Line 445: | Line 464: | ||
</div>(...)<!--Pop-up for: Energetics !Pop-up--> | </div>(...)<!--Pop-up for: Energetics !Pop-up--> | ||
<div class="1N9YWY436-1PVQ0N0-259N" style="display:none;"> | <div class="1N9YWY436-1PVQ0N0-259N" style="display:none;"> | ||
+ | |||
Line 456: | Line 476: | ||
</div>(...)<!--Pop-up for: Mutations and Epimutations of DNA and Mitochondrion DNA !Pop-up--> | </div>(...)<!--Pop-up for: Mutations and Epimutations of DNA and Mitochondrion DNA !Pop-up--> | ||
<div class="1N9YX9GK2-1TX4VJ6-25K5" style="display:none;"> | <div class="1N9YX9GK2-1TX4VJ6-25K5" style="display:none;"> | ||
+ | |||
Line 467: | Line 488: | ||
</div>(...)<!--Pop-up for: Dysfunctional Mitochondria !Pop-up--> | </div>(...)<!--Pop-up for: Dysfunctional Mitochondria !Pop-up--> | ||
<div class="1N9YVPH4H-2591JWC-23ZW" style="display:none;"> | <div class="1N9YVPH4H-2591JWC-23ZW" style="display:none;"> | ||
+ | |||
Latest revision as of 09:26, 2 August 2015
Postmitotic cells mechanism of aging
Most pronounced age-related changes occur in long-lived postmitotic cells, such as neurons, retinal pigment epithelium (RPE), cardiac myocytes, and skeletal muscle fibers. These cells are all highly vulnerable to aging due, of course, to their intensive oxygen metabolism and a consequent extensive ROS production; this is especially true for cardiac myocytes, cortical neurons, and RPE cells. A no-less-important contribution to vulnerability of long-lived postmitotic cells to aging is the fact that these cells are replaced rarely, or not at all, and can thus be as old as the organism itself. In contrast, short-lived postmitotic cells, which are frequently replaced because of division and differentiation of stem cells (e.g., intestinal epithelial cells and peripheral blood cells), do not accumulate substantial amounts of waste during their short lifetimes. However, such short-lived postmitotic cells may alter to some extent with organismal age, possibly reflecting changes in stem and progenitor cells, even though their continuous division considerably decreases their intracellular accumulation of waste products. Recently it was shown that the proliferation potential of stem and progenitor cells decreases with age. Because of this deterioration, the efficiency of biologic waste dilution by cell division also decreases in stem and progenitor cells with age, accompanied by the less-frequent replacement of mature short-lived postmitotic cells.
The comparatively small number of commanding neuroendocrine cells in the hypothalamus produces tropic hormones. These postmitotic cells regulate the outflow of a number of secondary-order hormones from the pituitary gland, which in turn regulate a range of tertiary-order hormones from peripheral endocrine glands at the bottom of the pyramid. It is conceivable that the age-related loss of a limited number of commanders at the top of this pyramid could lead to an overthrow of the whole organism.
Aging may thus be assumed to be, to a large extent, a result of the deterioration of long-lived postmitotic cells due to their limited renewal capacity, even if oxidative damage to the components of connective tissues, which normally are recycled by matrix metalloproteinases, also contributes to the aging process. The modification of connective tissue components, making them non-degradable, results from metal-dependent oxidation, or from glycation with secondary Amadori rearrangements into advanced glycation end products (AGEs).