Difference between revisions of "Hif-1"

From Aging Chart
Jump to: navigation, search
(Autoloading by CXLParser)
(Autoloading by CXLParser)
Line 153: Line 153:
 
(.//.)<html><!--Pop-up for: Protein-glucose  Transporter (Glut1) !Pop-up-->
 
(.//.)<html><!--Pop-up for: Protein-glucose  Transporter (Glut1) !Pop-up-->
 
<div class="1NLC3S6RH-CGYBNY-5Q0" style="display:none;">
 
<div class="1NLC3S6RH-CGYBNY-5Q0" style="display:none;">
 +
  
  
Line 160: Line 161:
  
 
<h3>Protein-glucose  Transporter (Glut1)</h3>
 
<h3>Protein-glucose  Transporter (Glut1)</h3>
<div class="links"> </div>
+
<div class="links"><a href="http://www.ncbi.nlm.nih.gov/pubmed/11248550">PMID: 11248550</a><br /><a href="http://www.ncbi.nlm.nih.gov/pubmed/16136514">PMID: 16136514</a><br /></div>
 
</div>(...)<!--Pop-up for: Gene expression of antihypoxic factors !Pop-up-->
 
</div>(...)<!--Pop-up for: Gene expression of antihypoxic factors !Pop-up-->
 
<div class="1NLC3S6RH-1LX325-5PX" style="display:none;">
 
<div class="1NLC3S6RH-1LX325-5PX" style="display:none;">
 +
  
  
Line 170: Line 172:
  
 
<h3>Gene expression of antihypoxic factors</h3>
 
<h3>Gene expression of antihypoxic factors</h3>
<div class="links"> </div>
+
<div class="links"><a href="http://www.ncbi.nlm.nih.gov/pubmed/19491311">PMID: 19491311</a><br /><a href="http://www.ncbi.nlm.nih.gov/pubmed/24336881">PMID: 24336881</a><br /></div>
 
</div>(...)<!--Pop-up for: Transferrin !Pop-up-->
 
</div>(...)<!--Pop-up for: Transferrin !Pop-up-->
 
<div class="1NLC3S6RK-1LPNNGN-5R5" style="display:none;">
 
<div class="1NLC3S6RK-1LPNNGN-5R5" style="display:none;">
 +
  
  
Line 180: Line 183:
  
 
<h3>Transferrin</h3>
 
<h3>Transferrin</h3>
<div class="links"> </div>
+
<div class="links"><a href="http://www.ncbi.nlm.nih.gov/pubmed/18519569">PMID: 18519569</a><br /><a href="http://www.ncbi.nlm.nih.gov/pubmed/20008200">PMID: 20008200</a><br /></div>
 
</div>(...)<!--Pop-up for: Shift to  Anaerobic metabolism !Pop-up-->
 
</div>(...)<!--Pop-up for: Shift to  Anaerobic metabolism !Pop-up-->
 
<div class="1NLC3S6RJ-10QLBW5-5QD" style="display:none;">
 
<div class="1NLC3S6RJ-10QLBW5-5QD" style="display:none;">
 +
  
  
Line 190: Line 194:
  
 
<h3>Shift to  Anaerobic metabolism</h3>
 
<h3>Shift to  Anaerobic metabolism</h3>
<div class="links"> </div>
+
<div class="links"><a href="http://www.ncbi.nlm.nih.gov/pubmed/16517406">PMID: 16517406</a><br /></div>
 
</div>(...)<!--Pop-up for: Blood transport function !Pop-up-->
 
</div>(...)<!--Pop-up for: Blood transport function !Pop-up-->
 
<div class="1NLC3S6RH-7J8QQH-5Q9" style="display:none;">
 
<div class="1NLC3S6RH-7J8QQH-5Q9" style="display:none;">
 +
  
  
Line 200: Line 205:
  
 
<h3>Blood transport function</h3>
 
<h3>Blood transport function</h3>
<div class="links"> </div>
+
<div class="links"><a href="http://www.ncbi.nlm.nih.gov/pubmed/16887934">PMID: 16887934</a><br /><a href="http://www.ncbi.nlm.nih.gov/pubmed/23733342">PMID: 23733342</a><br /></div>
 
</div>(...)<!--Pop-up for: Vascular endothelial  Growth factor  !Pop-up-->
 
</div>(...)<!--Pop-up for: Vascular endothelial  Growth factor  !Pop-up-->
 
<div class="1NLC3S6RK-23ZC1K8-5QZ" style="display:none;">
 
<div class="1NLC3S6RK-23ZC1K8-5QZ" style="display:none;">
 +
  
  
Line 210: Line 216:
  
 
<h3>Vascular endothelial  Growth factor </h3>
 
<h3>Vascular endothelial  Growth factor </h3>
<div class="links"> </div>
+
<div class="links"><a href="http://www.ncbi.nlm.nih.gov/pubmed/22762016">PMID: 22762016</a><br /></div>
 
</div>(...)<!--Pop-up for: Aldolase A !Pop-up-->
 
</div>(...)<!--Pop-up for: Aldolase A !Pop-up-->
 
<div class="1NLC3S6RH-MZX0PW-5Q6" style="display:none;">
 
<div class="1NLC3S6RH-MZX0PW-5Q6" style="display:none;">
 +
  
  
Line 220: Line 227:
  
 
<h3>Aldolase A</h3>
 
<h3>Aldolase A</h3>
<div class="links"> </div>
+
<div class="links"><a href="http://www.ncbi.nlm.nih.gov/pubmed/19264039">PMID: 19264039</a><br /><a href="http://www.ncbi.nlm.nih.gov/pubmed/16798780">PMID: 16798780</a><br /><a href="http://www.ncbi.nlm.nih.gov/pubmed/8089148">PMID: 8089148</a><br /><a href="http://www.ncbi.nlm.nih.gov/pubmed/16930621">PMID: 16930621</a><br /></div>
 
</div>(...)<!--Pop-up for: Erythropoietin !Pop-up-->
 
</div>(...)<!--Pop-up for: Erythropoietin !Pop-up-->
 
<div class="1NLC3S6RH-L6J9ZG-5Q3" style="display:none;">
 
<div class="1NLC3S6RH-L6J9ZG-5Q3" style="display:none;">
 +
  
  
Line 230: Line 238:
  
 
<h3>Erythropoietin</h3>
 
<h3>Erythropoietin</h3>
<div class="links"> </div>
+
<div class="links"><a href="http://www.ncbi.nlm.nih.gov/pubmed/10887110">PMID: 10887110</a><br /><a href="http://www.ncbi.nlm.nih.gov/pubmed/23733342">PMID: 23733342</a><br /></div>
 
</div>(...)<!--Pop-up for: TWIST !Pop-up-->
 
</div>(...)<!--Pop-up for: TWIST !Pop-up-->
 
<div class="1NLC3S6RJ-HPY71C-5QP" style="display:none;">
 
<div class="1NLC3S6RJ-HPY71C-5QP" style="display:none;">
 +
  
  
Line 240: Line 249:
  
 
<h3>TWIST</h3>
 
<h3>TWIST</h3>
<div class="links"> </div>
+
<div class="links"><a href="http://www.ncbi.nlm.nih.gov/pubmed/18635960">PMID: 18635960</a><br /><a href="http://www.ncbi.nlm.nih.gov/pubmed/23928864">PMID: 23928864</a><br /></div>
 
</div>(...)<!--Pop-up for: Hif-1 !Pop-up-->
 
</div>(...)<!--Pop-up for: Hif-1 !Pop-up-->
 
<div class="1NLC3S6RH-BWD1K7-5PT" style="display:none;">
 
<div class="1NLC3S6RH-BWD1K7-5PT" style="display:none;">
 +
  
  
Line 250: Line 260:
  
 
<h3>Hif-1</h3>
 
<h3>Hif-1</h3>
<div class="links"> </div>
+
<div class="links"><a href="http://www.ncbi.nlm.nih.gov/pubmed/24569087">PMID: 24569087</a><br /><a href="http://www.ncbi.nlm.nih.gov/pubmed/16887934">PMID: 16887934</a><br /><a href="http://www.ncbi.nlm.nih.gov/pubmed/9027737">PMID: 9027737</a><br /><a href="http://www.ncbi.nlm.nih.gov/pubmed/20707608">PMID: 20707608</a><br /></div>
 
</div>(...)<!--Pop-up for: P21 !Pop-up-->
 
</div>(...)<!--Pop-up for: P21 !Pop-up-->
 
<div class="1NLC3S6RJ-1G6ZNN0-5QS" style="display:none;">
 
<div class="1NLC3S6RJ-1G6ZNN0-5QS" style="display:none;">
 +
  
  
Line 260: Line 271:
  
 
<h3>P21</h3>
 
<h3>P21</h3>
<div class="links"> </div>
+
<div class="links"><a href="http://www.ncbi.nlm.nih.gov/pubmed/20952688">PMID: 20952688</a><br /><a href="http://www.ncbi.nlm.nih.gov/pubmed/18635960">PMID: 18635960</a><br /></div>
 
</div>(...)<!--Pop-up for: Pyruvate  Kinase M !Pop-up-->
 
</div>(...)<!--Pop-up for: Pyruvate  Kinase M !Pop-up-->
 
<div class="1NLC3S6RJ-1BSY80L-5QH" style="display:none;">
 
<div class="1NLC3S6RJ-1BSY80L-5QH" style="display:none;">
 +
  
  
Line 270: Line 282:
  
 
<h3>Pyruvate  Kinase M</h3>
 
<h3>Pyruvate  Kinase M</h3>
<div class="links"> </div>
+
<div class="links"><a href="http://www.ncbi.nlm.nih.gov/pubmed/8089148">PMID: 8089148</a><br /><a href="http://www.ncbi.nlm.nih.gov/pubmed/9748288">PMID: 9748288</a><br /></div>
 
</div>(...)<!--Pop-up for: E2A !Pop-up-->
 
</div>(...)<!--Pop-up for: E2A !Pop-up-->
 
<div class="1NLC3S6RJ-CF3NKW-5QW" style="display:none;">
 
<div class="1NLC3S6RJ-CF3NKW-5QW" style="display:none;">
 +
  
  
Line 280: Line 293:
  
 
<h3>E2A</h3>
 
<h3>E2A</h3>
<div class="links"> </div>
+
<div class="links"><a href="http://www.ncbi.nlm.nih.gov/pubmed/20952688">PMID: 20952688</a><br /></div>
 
</div>(...)<!--Pop-up for: Angiogenesis  !Pop-up-->
 
</div>(...)<!--Pop-up for: Angiogenesis  !Pop-up-->
 
<div class="1NLC3S6RK-1W9X00N-5R2" style="display:none;">
 
<div class="1NLC3S6RK-1W9X00N-5R2" style="display:none;">
 +
  
  
Line 290: Line 304:
  
 
<h3>Angiogenesis </h3>
 
<h3>Angiogenesis </h3>
<div class="links"> </div>
+
<div class="links"><a href="http://www.ncbi.nlm.nih.gov/pubmed/17118268">PMID: 17118268</a><br /></div>
 
</div>(...)<!--Pop-up for: Cellular  Senescence !Pop-up-->
 
</div>(...)<!--Pop-up for: Cellular  Senescence !Pop-up-->
 
<div class="1NLC3S6RJ-1DFN6BQ-5QL" style="display:none;">
 
<div class="1NLC3S6RJ-1DFN6BQ-5QL" style="display:none;">
 +
  
  
Line 300: Line 315:
  
 
<h3>Cellular  Senescence</h3>
 
<h3>Cellular  Senescence</h3>
<div class="links"> </div>
+
<div class="links"><a href="http://www.ncbi.nlm.nih.gov/pubmed/16457978">PMID: 16457978</a><br /></div>
 
</div>(...)<!--Pop-up for: Hypoxia  !Pop-up-->
 
</div>(...)<!--Pop-up for: Hypoxia  !Pop-up-->
 
<div class="1NLC3S6RG-2N2P8S-5PN" style="display:none;">
 
<div class="1NLC3S6RG-2N2P8S-5PN" style="display:none;">
 +
  
  
Line 310: Line 326:
  
 
<h3>Hypoxia </h3>
 
<h3>Hypoxia </h3>
<div class="links"> </div>
+
<div class="links"><a href="http://www.ncbi.nlm.nih.gov/pubmed/21677261">PMID: 21677261</a><br /></div>
</div>(.//.)(.//.)<!-- Do not edit!  -->
+
</div>(.//.)<h1>Hif-1</h1>
 +
 
 +
<p>A key regulator of cellular response to hypoxia is the protein hypoxia-inducible factor–1 (HIF-1). HIF-1, composed of a dimer of an alpha (HIF-1α) and a beta (ARNT or HIF-1β) subunit, is present in all nucleated cells of metazoan organisms. The subunits of HIF-1 bind together to acquire transcriptional properties, allowing it to regulate the transcriptional activity of hundreds of genes that promote cell survival in hypoxic conditions. Considered to be a master regulator of oxygen homeostasis, HIF-1 acts predominantly under hypoxic conditions. The HIF-1β subunit is constitutively expressed whereas the HIF-1α subunit is oxygen regulated. Regulation of HIF-1 is thus determined by the rapid posttranslational degradation or stabilization of the HIF-1α subunit.In normal tissue oxygen conditions, HIF-1α is rapidly and continuously degraded following translation. Tissue hypoxia, however, induces a sustained increase in the expression of HIF-1α. </p>
 +
<p>Adaptive cellular responses to hypoxia are mediated by HIF-1, which upregulates the expression of many genes that enhance healing in low-oxygen conditions. HIF-1 activation is also a primary stimulus of angiogenesis, the formation of new blood vessels from pre-existing vessels, in both physiological and pathological conditions. Hypoxia stimulates the growth and remodeling of the existing vasculature. This enhances blood flow to oxygen-deprived tissues through the activation of several HIF target genes. These include vascular endothelial growth factor (VEGF), a potent angiogenic factor, as well as other angiogenic growth factors, such as angiopoietin 2 and stromal cell-derived factor 1 (SDF-1).</p>
 +
<p>In vivo microenvironment for hematopoietic stem cells is hypoxic, and stabilized HIF-1α is required to maintain their stem cell-like properties. Mesenchymal stem cells cultured at an oxygen concentration of 3% showed delayed replicative senescence compared with cells cultured in ambient atmospheric conditions of ~20% O2. It has also been shown that aged cells display a decreased ability to express HIF-1 target genes under hypoxic conditions and impaired binding of HIF-1 to HREs. These observations may explain the susceptibility of aged organisms to hypoxic stress. Together these findings suggest that oxygen limitation and/or activation of HIF-1 play important roles in cellular senescence. Three independent studies have shown that stabilization of HIF-1 can increase life span, while three studies have found that deletion of hif-1 can increase life span. There seems to be consensus that life span extension from stabilization of HIF-1 depends on a mechanism. One possible explanation for HIF-1 mediated lifespan extension is that HIF-1 down-regulates mitochondrial activity. Alternatively, HIF-1 could act as a stress response factor to up-regulate protection against multiple stresses.</p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p>(.//.)<!-- Do not edit!  -->
 
<html>
 
<html>
 
<link type="text/css" rel="stylesheet" href="/aging-chart/js/jquery.qtip.min.css" />
 
<link type="text/css" rel="stylesheet" href="/aging-chart/js/jquery.qtip.min.css" />

Revision as of 15:17, 17 June 2015

This is a graph with borders and nodes. Maybe there is an Imagemap used so the nodes may be linking to some Pages.

Hif-1

A key regulator of cellular response to hypoxia is the protein hypoxia-inducible factor–1 (HIF-1). HIF-1, composed of a dimer of an alpha (HIF-1α) and a beta (ARNT or HIF-1β) subunit, is present in all nucleated cells of metazoan organisms. The subunits of HIF-1 bind together to acquire transcriptional properties, allowing it to regulate the transcriptional activity of hundreds of genes that promote cell survival in hypoxic conditions. Considered to be a master regulator of oxygen homeostasis, HIF-1 acts predominantly under hypoxic conditions. The HIF-1β subunit is constitutively expressed whereas the HIF-1α subunit is oxygen regulated. Regulation of HIF-1 is thus determined by the rapid posttranslational degradation or stabilization of the HIF-1α subunit.In normal tissue oxygen conditions, HIF-1α is rapidly and continuously degraded following translation. Tissue hypoxia, however, induces a sustained increase in the expression of HIF-1α. 

Adaptive cellular responses to hypoxia are mediated by HIF-1, which upregulates the expression of many genes that enhance healing in low-oxygen conditions. HIF-1 activation is also a primary stimulus of angiogenesis, the formation of new blood vessels from pre-existing vessels, in both physiological and pathological conditions. Hypoxia stimulates the growth and remodeling of the existing vasculature. This enhances blood flow to oxygen-deprived tissues through the activation of several HIF target genes. These include vascular endothelial growth factor (VEGF), a potent angiogenic factor, as well as other angiogenic growth factors, such as angiopoietin 2 and stromal cell-derived factor 1 (SDF-1).

In vivo microenvironment for hematopoietic stem cells is hypoxic, and stabilized HIF-1α is required to maintain their stem cell-like properties. Mesenchymal stem cells cultured at an oxygen concentration of 3% showed delayed replicative senescence compared with cells cultured in ambient atmospheric conditions of ~20% O2. It has also been shown that aged cells display a decreased ability to express HIF-1 target genes under hypoxic conditions and impaired binding of HIF-1 to HREs. These observations may explain the susceptibility of aged organisms to hypoxic stress. Together these findings suggest that oxygen limitation and/or activation of HIF-1 play important roles in cellular senescence. Three independent studies have shown that stabilization of HIF-1 can increase life span, while three studies have found that deletion of hif-1 can increase life span. There seems to be consensus that life span extension from stabilization of HIF-1 depends on a mechanism. One possible explanation for HIF-1 mediated lifespan extension is that HIF-1 down-regulates mitochondrial activity. Alternatively, HIF-1 could act as a stress response factor to up-regulate protection against multiple stresses.