Difference between revisions of "Hif-1"

From Aging Chart
Jump to: navigation, search
(Autoloading by CXLParser)
(Autoloading by CXLParser)
 
Line 153: Line 153:
 
(.//.)<html><!--Pop-up for: Protein-glucose  Transporter (Glut1) !Pop-up-->
 
(.//.)<html><!--Pop-up for: Protein-glucose  Transporter (Glut1) !Pop-up-->
 
<div class="1NLC3S6RH-CGYBNY-5Q0" style="display:none;">
 
<div class="1NLC3S6RH-CGYBNY-5Q0" style="display:none;">
 +
  
  
Line 164: Line 165:
 
</div>(...)<!--Pop-up for: Gene expression of antihypoxic factors !Pop-up-->
 
</div>(...)<!--Pop-up for: Gene expression of antihypoxic factors !Pop-up-->
 
<div class="1NLC3S6RH-1LX325-5PX" style="display:none;">
 
<div class="1NLC3S6RH-1LX325-5PX" style="display:none;">
 +
  
  
Line 175: Line 177:
 
</div>(...)<!--Pop-up for: Transferrin !Pop-up-->
 
</div>(...)<!--Pop-up for: Transferrin !Pop-up-->
 
<div class="1NLC3S6RK-1LPNNGN-5R5" style="display:none;">
 
<div class="1NLC3S6RK-1LPNNGN-5R5" style="display:none;">
 +
  
  
Line 186: Line 189:
 
</div>(...)<!--Pop-up for: Shift to  Anaerobic metabolism !Pop-up-->
 
</div>(...)<!--Pop-up for: Shift to  Anaerobic metabolism !Pop-up-->
 
<div class="1NLC3S6RJ-10QLBW5-5QD" style="display:none;">
 
<div class="1NLC3S6RJ-10QLBW5-5QD" style="display:none;">
 +
  
  
Line 197: Line 201:
 
</div>(...)<!--Pop-up for: Blood transport function !Pop-up-->
 
</div>(...)<!--Pop-up for: Blood transport function !Pop-up-->
 
<div class="1NLC3S6RH-7J8QQH-5Q9" style="display:none;">
 
<div class="1NLC3S6RH-7J8QQH-5Q9" style="display:none;">
 +
  
  
Line 208: Line 213:
 
</div>(...)<!--Pop-up for: Vascular endothelial  Growth factor  !Pop-up-->
 
</div>(...)<!--Pop-up for: Vascular endothelial  Growth factor  !Pop-up-->
 
<div class="1NLC3S6RK-23ZC1K8-5QZ" style="display:none;">
 
<div class="1NLC3S6RK-23ZC1K8-5QZ" style="display:none;">
 +
  
  
Line 219: Line 225:
 
</div>(...)<!--Pop-up for: Aldolase A !Pop-up-->
 
</div>(...)<!--Pop-up for: Aldolase A !Pop-up-->
 
<div class="1NLC3S6RH-MZX0PW-5Q6" style="display:none;">
 
<div class="1NLC3S6RH-MZX0PW-5Q6" style="display:none;">
 +
  
  
Line 230: Line 237:
 
</div>(...)<!--Pop-up for: Erythropoietin !Pop-up-->
 
</div>(...)<!--Pop-up for: Erythropoietin !Pop-up-->
 
<div class="1NLC3S6RH-L6J9ZG-5Q3" style="display:none;">
 
<div class="1NLC3S6RH-L6J9ZG-5Q3" style="display:none;">
 +
  
  
Line 241: Line 249:
 
</div>(...)<!--Pop-up for: TWIST !Pop-up-->
 
</div>(...)<!--Pop-up for: TWIST !Pop-up-->
 
<div class="1NLC3S6RJ-HPY71C-5QP" style="display:none;">
 
<div class="1NLC3S6RJ-HPY71C-5QP" style="display:none;">
 +
  
  
Line 252: Line 261:
 
</div>(...)<!--Pop-up for: Hif-1 !Pop-up-->
 
</div>(...)<!--Pop-up for: Hif-1 !Pop-up-->
 
<div class="1NLC3S6RH-BWD1K7-5PT" style="display:none;">
 
<div class="1NLC3S6RH-BWD1K7-5PT" style="display:none;">
 +
  
  
Line 263: Line 273:
 
</div>(...)<!--Pop-up for: P21 !Pop-up-->
 
</div>(...)<!--Pop-up for: P21 !Pop-up-->
 
<div class="1NLC3S6RJ-1G6ZNN0-5QS" style="display:none;">
 
<div class="1NLC3S6RJ-1G6ZNN0-5QS" style="display:none;">
 +
  
  
Line 274: Line 285:
 
</div>(...)<!--Pop-up for: Pyruvate  Kinase M !Pop-up-->
 
</div>(...)<!--Pop-up for: Pyruvate  Kinase M !Pop-up-->
 
<div class="1NLC3S6RJ-1BSY80L-5QH" style="display:none;">
 
<div class="1NLC3S6RJ-1BSY80L-5QH" style="display:none;">
 +
  
  
Line 285: Line 297:
 
</div>(...)<!--Pop-up for: E2A !Pop-up-->
 
</div>(...)<!--Pop-up for: E2A !Pop-up-->
 
<div class="1NLC3S6RJ-CF3NKW-5QW" style="display:none;">
 
<div class="1NLC3S6RJ-CF3NKW-5QW" style="display:none;">
 +
  
  
Line 296: Line 309:
 
</div>(...)<!--Pop-up for: Angiogenesis  !Pop-up-->
 
</div>(...)<!--Pop-up for: Angiogenesis  !Pop-up-->
 
<div class="1NLC3S6RK-1W9X00N-5R2" style="display:none;">
 
<div class="1NLC3S6RK-1W9X00N-5R2" style="display:none;">
 +
  
  
Line 307: Line 321:
 
</div>(...)<!--Pop-up for: Cellular  Senescence !Pop-up-->
 
</div>(...)<!--Pop-up for: Cellular  Senescence !Pop-up-->
 
<div class="1NLC3S6RJ-1DFN6BQ-5QL" style="display:none;">
 
<div class="1NLC3S6RJ-1DFN6BQ-5QL" style="display:none;">
 +
  
  
Line 318: Line 333:
 
</div>(...)<!--Pop-up for: Hypoxia  !Pop-up-->
 
</div>(...)<!--Pop-up for: Hypoxia  !Pop-up-->
 
<div class="1NLC3S6RG-2N2P8S-5PN" style="display:none;">
 
<div class="1NLC3S6RG-2N2P8S-5PN" style="display:none;">
 +
  
  

Latest revision as of 09:26, 2 August 2015

This is a graph with borders and nodes. Maybe there is an Imagemap used so the nodes may be linking to some Pages.

Hif-1

A key regulator of cellular response to hypoxia is the protein hypoxia-inducible factor–1 (HIF-1). HIF-1, composed of a dimer of an alpha (HIF-1α) and a beta (ARNT or HIF-1β) subunit, is present in all nucleated cells of metazoan organisms. The subunits of HIF-1 bind together to acquire transcriptional properties, allowing it to regulate the transcriptional activity of hundreds of genes that promote cell survival in hypoxic conditions. Considered to be a master regulator of oxygen homeostasis, HIF-1 acts predominantly under hypoxic conditions. The HIF-1β subunit is constitutively expressed whereas the HIF-1α subunit is oxygen regulated. Regulation of HIF-1 is thus determined by the rapid posttranslational degradation or stabilization of the HIF-1α subunit.In normal tissue oxygen conditions, HIF-1α is rapidly and continuously degraded following translation. Tissue hypoxia, however, induces a sustained increase in the expression of HIF-1α. 

Adaptive cellular responses to hypoxia are mediated by HIF-1, which upregulates the expression of many genes that enhance healing in low-oxygen conditions. HIF-1 activation is also a primary stimulus of angiogenesis, the formation of new blood vessels from pre-existing vessels, in both physiological and pathological conditions. Hypoxia stimulates the growth and remodeling of the existing vasculature. This enhances blood flow to oxygen-deprived tissues through the activation of several HIF target genes. These include vascular endothelial growth factor (VEGF), a potent angiogenic factor, as well as other angiogenic growth factors, such as angiopoietin 2 and stromal cell-derived factor 1 (SDF-1).

In vivo microenvironment for hematopoietic stem cells is hypoxic, and stabilized HIF-1α is required to maintain their stem cell-like properties. Mesenchymal stem cells cultured at an oxygen concentration of 3% showed delayed replicative senescence compared with cells cultured in ambient atmospheric conditions of ~20% O2. It has also been shown that aged cells display a decreased ability to express HIF-1 target genes under hypoxic conditions and impaired binding of HIF-1 to HREs. These observations may explain the susceptibility of aged organisms to hypoxic stress. Together these findings suggest that oxygen limitation and/or activation of HIF-1 play important roles in cellular senescence. Three independent studies have shown that stabilization of HIF-1 can increase life span, while three studies have found that deletion of hif-1 can increase life span. There seems to be consensus that life span extension from stabilization of HIF-1 depends on a mechanism. One possible explanation for HIF-1 mediated lifespan extension is that HIF-1 down-regulates mitochondrial activity. Alternatively, HIF-1 could act as a stress response factor to up-regulate protection against multiple stresses.