Difference between revisions of "Applications of regenerative medicine"

From Aging Chart
Jump to: navigation, search
(Autoloading by CXLParser)
(Autoloading by CXLParser)
 
Line 205: Line 205:
 
(.//.)<html><!--Pop-up for: Introduction into body of  DNA or RNA modifying  Properties of cells !Pop-up-->
 
(.//.)<html><!--Pop-up for: Introduction into body of  DNA or RNA modifying  Properties of cells !Pop-up-->
 
<div class="1HY04G38G-1XRN4VR-60Z" style="display:none;">
 
<div class="1HY04G38G-1XRN4VR-60Z" style="display:none;">
 +
  
  
Line 216: Line 217:
 
</div>(...)<!--Pop-up for: Artificial organs !Pop-up-->
 
</div>(...)<!--Pop-up for: Artificial organs !Pop-up-->
 
<div class="1HY0522D7-1JYFF2V-6VX" style="display:none;">
 
<div class="1HY0522D7-1JYFF2V-6VX" style="display:none;">
 +
  
  
Line 227: Line 229:
 
</div>(...)<!--Pop-up for: Micromotors !Pop-up-->
 
</div>(...)<!--Pop-up for: Micromotors !Pop-up-->
 
<div class="1HY0681Q2-16NPF5-7Y9" style="display:none;">
 
<div class="1HY0681Q2-16NPF5-7Y9" style="display:none;">
 +
  
  
Line 238: Line 241:
 
</div>(...)<!--Pop-up for: Creation of automated  Prosthesis to exchange  Defective organs !Pop-up-->
 
</div>(...)<!--Pop-up for: Creation of automated  Prosthesis to exchange  Defective organs !Pop-up-->
 
<div class="1HY05607L-9MJBT8-6ZR" style="display:none;">
 
<div class="1HY05607L-9MJBT8-6ZR" style="display:none;">
 +
  
  
Line 249: Line 253:
 
</div>(...)<!--Pop-up for: Products of bio-mechanical combinations !Pop-up-->
 
</div>(...)<!--Pop-up for: Products of bio-mechanical combinations !Pop-up-->
 
<div class="1HY041F96-1G2373K-5QH" style="display:none;">
 
<div class="1HY041F96-1G2373K-5QH" style="display:none;">
 +
  
  
Line 260: Line 265:
 
</div>(...)<!--Pop-up for: Gene therapy !Pop-up-->
 
</div>(...)<!--Pop-up for: Gene therapy !Pop-up-->
 
<div class="1HY045P7F-15PBPRD-5RP" style="display:none;">
 
<div class="1HY045P7F-15PBPRD-5RP" style="display:none;">
 +
  
  
Line 271: Line 277:
 
</div>(...)<!--Pop-up for: Self-contained power sources !Pop-up-->
 
</div>(...)<!--Pop-up for: Self-contained power sources !Pop-up-->
 
<div class="1N9GXL8J0-1W2GFVW-1DYG" style="display:none;">
 
<div class="1N9GXL8J0-1W2GFVW-1DYG" style="display:none;">
 +
  
  
Line 282: Line 289:
 
</div>(...)<!--Pop-up for: Growing whole organ  From stem cells  For transplantation !Pop-up-->
 
</div>(...)<!--Pop-up for: Growing whole organ  From stem cells  For transplantation !Pop-up-->
 
<div class="1HY0473J1-T43ZKP-5SJ" style="display:none;">
 
<div class="1HY0473J1-T43ZKP-5SJ" style="display:none;">
 +
  
  
Line 293: Line 301:
 
</div>(...)<!--Pop-up for: Tissue engineering !Pop-up-->
 
</div>(...)<!--Pop-up for: Tissue engineering !Pop-up-->
 
<div class="1HY03C8RV-GD4L71-5M6" style="display:none;">
 
<div class="1HY03C8RV-GD4L71-5M6" style="display:none;">
 +
  
  
Line 304: Line 313:
 
</div>(...)<!--Pop-up for: Exchange of  Defective parts of organs (heart, blood vessels !Pop-up-->
 
</div>(...)<!--Pop-up for: Exchange of  Defective parts of organs (heart, blood vessels !Pop-up-->
 
<div class="1N9GYHF3H-250SBDW-1FCY" style="display:none;">
 
<div class="1N9GYHF3H-250SBDW-1FCY" style="display:none;">
 +
  
  
Line 315: Line 325:
 
</div>(...)<!--Pop-up for: Advances in Science of materials !Pop-up-->
 
</div>(...)<!--Pop-up for: Advances in Science of materials !Pop-up-->
 
<div class="1N9GXKXVQ-21WF19B-1DY8" style="display:none;">
 
<div class="1N9GXKXVQ-21WF19B-1DY8" style="display:none;">
 +
  
  
Line 326: Line 337:
 
</div>(...)<!--Pop-up for: Study of biology of interaction  Between stem cells and their niches !Pop-up-->
 
</div>(...)<!--Pop-up for: Study of biology of interaction  Between stem cells and their niches !Pop-up-->
 
<div class="1HY0651N5-1BPK2L8-7SP" style="display:none;">
 
<div class="1HY0651N5-1BPK2L8-7SP" style="display:none;">
 +
  
  
Line 337: Line 349:
 
</div>(...)<!--Pop-up for: Cell therapy !Pop-up-->
 
</div>(...)<!--Pop-up for: Cell therapy !Pop-up-->
 
<div class="1HY0405CS-1TMV1PC-5NJ" style="display:none;">
 
<div class="1HY0405CS-1TMV1PC-5NJ" style="display:none;">
 +
  
  
Line 348: Line 361:
 
</div>(...)<!--Pop-up for: Introduction of small molecules, peptides or RNA to stimulate natural tissue regeneration !Pop-up-->
 
</div>(...)<!--Pop-up for: Introduction of small molecules, peptides or RNA to stimulate natural tissue regeneration !Pop-up-->
 
<div class="1HY04SWVD-1S9LPHY-6LC" style="display:none;">
 
<div class="1HY04SWVD-1S9LPHY-6LC" style="display:none;">
 +
  
  
Line 359: Line 373:
 
</div>(...)<!--Pop-up for: Regenerative medicine !Pop-up-->
 
</div>(...)<!--Pop-up for: Regenerative medicine !Pop-up-->
 
<div class="1P0RB57LP-235VCV4-1NT" style="display:none;">
 
<div class="1P0RB57LP-235VCV4-1NT" style="display:none;">
 +
  
 
<h3>Regenerative medicine</h3>
 
<h3>Regenerative medicine</h3>
Line 364: Line 379:
 
</div>(...)<!--Pop-up for: Genetic modification  Of cells outside body,  Introduction into organism !Pop-up-->
 
</div>(...)<!--Pop-up for: Genetic modification  Of cells outside body,  Introduction into organism !Pop-up-->
 
<div class="1HY04C1ZW-JXY7QC-5XV" style="display:none;">
 
<div class="1HY04C1ZW-JXY7QC-5XV" style="display:none;">
 +
  
  
Line 375: Line 391:
 
</div>(...)<!--Pop-up for: Transplanting stem cells  With their niches !Pop-up-->
 
</div>(...)<!--Pop-up for: Transplanting stem cells  With their niches !Pop-up-->
 
<div class="1HY0497QC-1VWP840-5VP" style="display:none;">
 
<div class="1HY0497QC-1VWP840-5VP" style="display:none;">
 +
  
  
Line 386: Line 403:
 
</div>(...)<!--Pop-up for: Endogenous repair !Pop-up-->
 
</div>(...)<!--Pop-up for: Endogenous repair !Pop-up-->
 
<div class="1HY040TTK-2BHGW8F-5P9" style="display:none;">
 
<div class="1HY040TTK-2BHGW8F-5P9" style="display:none;">
 +
  
  
Line 397: Line 415:
 
</div>(...)<!--Pop-up for: Investigation of  Regeneration molecular basis !Pop-up-->
 
</div>(...)<!--Pop-up for: Investigation of  Regeneration molecular basis !Pop-up-->
 
<div class="1HY06483D-1F4563F-7QP" style="display:none;">
 
<div class="1HY06483D-1F4563F-7QP" style="display:none;">
 +
  
  
Line 408: Line 427:
 
</div>(...)<!--Pop-up for: Combination of  Stem cells and synthetic  Or natural biomaterials !Pop-up-->
 
</div>(...)<!--Pop-up for: Combination of  Stem cells and synthetic  Or natural biomaterials !Pop-up-->
 
<div class="1HY04KYX9-1JRF1FC-66D" style="display:none;">
 
<div class="1HY04KYX9-1JRF1FC-66D" style="display:none;">
 +
  
  
Line 419: Line 439:
 
</div>(...)<!--Pop-up for: Advances in molecular genetics !Pop-up-->
 
</div>(...)<!--Pop-up for: Advances in molecular genetics !Pop-up-->
 
<div class="1HY066VVW-CQFWSH-7W4" style="display:none;">
 
<div class="1HY066VVW-CQFWSH-7W4" style="display:none;">
 +
  
  
Line 430: Line 451:
 
</div>(...)<!--Pop-up for: Creation of a biodegradable Scaffold materials !Pop-up-->
 
</div>(...)<!--Pop-up for: Creation of a biodegradable Scaffold materials !Pop-up-->
 
<div class="1HY061XB5-1TKB34R-7KJ" style="display:none;">
 
<div class="1HY061XB5-1TKB34R-7KJ" style="display:none;">
 +
  
  

Latest revision as of 09:26, 2 August 2015

This is a graph with borders and nodes. Maybe there is an Imagemap used so the nodes may be linking to some Pages.

Applications of regenerative medicine

Regenerative medicine is an emerging multidisciplinary field that aims to restore, maintain or enhance tissues and hence organ functions. Regenerative medicine has brought high expectations for a great number of current worldwide human illnesses. Diseases, such as Parkinson’s disease, Alzheimer’s disease, osteoporosis, spine injuries or cancer, might in the near future be treated with methods that aim at regenerating diseased or damaged tissues. The perspective of regenerating damaged or nonfunctional tissues by using an off-the-shelf synthetic product is a drive for medical science.

Tissue engineering combines the principles of cell transplantation, material science, and bioengineering to develop new biological substitutes that may restore and maintain normal organ function. Tissue engineering strategies generally fall into two categories: the use of acellular matrices, which serve as guides for proper orientation and direction of new tissue growth but depend on the body’s natural ability to regenerate, and the use of the matrices seeded with cells.

Cells can also be used for therapy via injection, either with a carrier such as a hydrogel, or alone. In addition cells can be used for matrix-based tissue engineering strategies. For this purpose, a small piece of donor tissue is dissociated into individual cells. The cells are either implanted directly into the host, or they are expanded in culture, attached to a support matrix, and then the cell-matrix construct is implanted into the host. The source of donor tissue can be heterologous (xenogeneic source such as bovine), allogeneic (same species, different individual), or autologous.

Nanomaterials used in biomedical applications include nanoparticles for molecules delivery (drugs, growth factors, DNA), nanofibres for tissue scaffolds, surface modifications of implantable materials or nanodevices, such as biosensors. The combination of these elements within tissue engineering (TE) is an excellent example of the great potential of nanotechnology applied to regenerative medicine. The ideal goal of regenerative medicine is the in vivo regeneration or, alternatively, the in vitro generation of a complex functional organ consisting of a scaffold made out of synthetic or natural materials that has been loaded with living cells. Ideally, stem cells are to be used owing to their ability to generate all types of tissues and their unlimited self-renewal capacity. The functionalisation of such a porous scaffold with different biomolecules(depending on the targeted cells) or the entrapment of nanoparticles, such as growth factors, drugs or genes, could enhance the success of the TE strategy greatly.